[1] 张飞飞 尚, 杨江峰,欧阳坤,李晋平. 乙二胺改性轻金属铝-金属有机骨架材料用于CO2/CH4分离. 无机化学学报. 2017;33:1611-7.
[2] 杨江峰, 欧阳坤, 陈杨, 杨成荫, 李晋平. 柔性 MOFs 材料 Cu (BDC) 的氨气吸附及可逆转化性能. 化工学报. 2017;68:418-23.
[3] 吴金婷, 郭天宇, 杜建平, 李晋平. 球形碳颗粒在环己烷脱氢反应中的催化作用. 太阳能学报. 2017:532-6.
[4] 王小青 李, 陈杨, 王勇, 李晋平. 金属有机骨架材料 Zr-FUM 的低碳烃分离性能. 太原理工大学学报. 2017;48:310-6.
[5] 王开放, 刘光, 高旭升, 贺冬莹, 李晋平. α-Fe 2 O 3 光电催化分解水制备氢气研究进展. 化工进展. 2017;36:397-409.
[6] 刘珊魁, 刘鹏程, 牛汝月, 王爽, 李晋平. 一种花状介孔四氧化三钴的合成及乏风瓦斯的催化燃烧研究. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES. 2017:0-.
[7] 李顺, 王勇, 李立博, 李晋平. 一维超微孔 MOFs [M 3 (HCOO) 6](M= Fe, Co, Ni) 用于乙烯-丙烯混合物的分离. 化工进展. 2017;36:3019-23.
[8] 郭瑞乾, 张萌, 罗居杰, 李晋平. 溴代功能化聚醚砜膜的制备及其对 CO_2/CH_4, CO_2/N_2 分离性能研究. 化工新型材料. 2017;45:45-7.
[9] 郭瑞乾, 张萌, 罗居杰, 李晋平. 酸化多壁碳纳米管/含氟聚砜复合膜的制备及其对 CO_2/CH_4 分离性能研究. 化工新型材料. 2017;45:79-82.
[10] 高旭升 刘, 史沁芳, 王开放, 许丽娟, 贺冬莹, 李晋平. 钴铁双金属氧化物多孔纳米棒的制备及其电解水析氧性能. 无机化学学报. 2017;33:623-9.
[11] Zhong D, Liu L, Li D, Wei C, Wang Q, Hao G, et al. Facile and fast fabrication of iron-phosphate supported on nickel foam as a highly efficient and stable oxygen evolution catalyst. J Mater Chem A. 2017;5:18627-33.
[12] Zhang Z, Wang Y, Jia X, Yang J, Li J. The Synergistic Effect of Oxygen and Water on the Stability of the Isostructural Family of Metal-Organic Frameworks [Cr3 (BTC) 2] and [Cu3 (BTC) 2]. Dalton Transactions. 2017;46:15573-81.
[13] Yang Chen YW, Chengyin Yang, Shuang Wang, Jiangfeng Yang, Jinping Li. Antenna-Protected Metal–Organic Squares for Water/Ammonia Uptake with Excellent Stability and Regenerability. ACS Sustainable Chem Eng. 2017;5:5082–9.
[14] Yang Chen CY, Xiaoqing Wang, Jiangfeng Yang, Jinping Li. Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8. Chem Eng J. 2017;313:179-86.
[15] Wang Y, Yang Q, Zhong C, Li J. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes. Appl Surf Sci. 2017;407:532-9.
[16] Wang X, Li L, Wang Y, Li J-R, Li J. Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons. CrystEngComm. 2017;19:1729-37.
[17] Shuang Wang TW, Pengcheng Liu, Ying Shi, Guang Liu, Jinping Li. Hierarchical Porous Carbons Derived From MicroporousZeolitic Metal Azolate Frameworks for Supercapacitor Electrodes. Mater Res Bull. 2017;88:62-8.
[18] Qiang Zhao LL, Dandan Li, Dazhong Zhong, Genyan Hao, Jinping Li. In-situ synthesis of Ag-Pi oxygen-evolving catalyst in phosphate environment for water splitting. Int J Hydrogen Energy. 2017;42:19935-41.
[19] Qiang Zhao DZ, Lin Liu , Genyan Hao , Dandan Li, Jinping Li. Facile fabrication of robust 3D Fe-NiSe nanowires supported on nickel foam as a highly efficient, durable oxygen evolution catalyst. J Mater Chem A. 2017;5:14639-45.
[20] Liu G, Gao X, Wang K, He D, Li J. Mesoporous nickel–iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017;10:2096-105.
[21] Libo Li R-BL, Rajamani Krishna, Xiaoqing Wang, Bin Li, Hui Wu, Jinping Li, Wei Zhou, Banglin Chen. Flexible–Robust Metal–Organic Framework for Efficient Removal of Propyne from Propylene. J Am Chem Soc. 2017;139:7733–6.
[22] Li L, Lin R-B, Krishna R, Wang X, Li B, Wu H, et al. Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal-organic framework. J Mater Chem A. 2017;5:18984-8.
[23] Guo T, Du J, Wu J, Li J. Enhanced properties of solid solution (CeZr) O 2 modified with metal oxides for catalytic oxidation of low-concentration methane. Chin J Chem Eng. 2017;25:187-92.
[24] Guang Liu DH, Rui Yao, Yong Zhao, Jinping Li. Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochim Acta. 2017;253:498-505.
[25] Chen Y, Wang B, Wang X, Xie L-H, Li J, Xie Y, et al. A Copper (II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water. ACS Appl Mater Interfaces. 2017;9:27027–35.
[26] Chang Wang JL, Jiangfeng Yang, Jinping Li. A crystal seeds-assisted synthesis of microporous and mesoporous silicalite-1 and their CO 2/N 2/CH 4/C 2 H 6 adsorption properties. Microporous Mesoporous Mater. 2017;242:231-7.