发表论文
当前位置: 气体实验室 >> 科技创新 >> 研究成果 >> 发表论文 >> 正文

2019年发表论文

日期:2019-02-07


[1] Wang L, Zhang F, Wang C, Li Y, Yang J, Li L, et al. Ethylenediamine-functionalized metal organic frameworks MIL-100 (Cr) for efficient CO2/N2O separation. Sep Purif Technol. 2020;235:116219.

[2] Shi Q, Wang J, Shang H, Bai H, Zhao Y, Yang J, et al. Effective CH4 Enrichment from N2 by SIM-1 via a Strong Adsorption Potential SOD Cage. Sep Purif Technol. 2020;230:115850.

[3] Guang Liu, Yun Wu, Na Li, Fei Zhao, Qiang Zhao, Jinping Li. 3D porous network heterostructure NiCe@NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Appl Catal B: Environ. 2020;260:118199.

[4] Peixin Zhang, Xin Wen, Liang Wang, Yao Zhong, Yun Su, Yan Zhang, Jun Wang*, Jiangfeng Yang*, Zheling Zeng, Shuguang Deng*, Algae-derived N-doped porous carbons with ultrahigh specific surface area for highly selective separation of light hydrocarbons, Chemical Engineering Journal, 2020, 122731.

[5] 李娜, 王慕恒, 赵勇, 姚瑞, 刘光, 李晋平. 二元ZnCo-LDH助催化剂对BiVO4光电化学性能的促进. 无机化学学报. 2019;35:1773-80.

[6] Zhang H, Shi W, Gao N, Zhao R, Ahmed MM, Zhang T, et al. Highly sensitive and selective gas-phase ethanolamine sensor by doping sulfur into nanostructured ZnO. Sensors Actuators B: Chem. 2019;296:126633.

[7] Zhang F, Gu X, Zheng S, HefengYuan, Li J, Wang X. Highly catalytic flexible RuO2 on carbon fiber cloth network for boosting chlorine evolution reaction. Electrochim Acta. 2019;307:385-92.

[8] Yuan H, Wang S, Gu X, Tang B, Li J, Wang X. One-Step Solid-phase Boronation to Fabricate Self-Supported Porous FeNiB/FeNi Foam for Efficient Electrocatalytic Oxygen Evolution and Overall Water Splitting. J Mater Chem A. 2019;7:19554-64.

[9] Yao R, Wu Y, Wang M, Li N, Zhao F, Zhao Q, et al. Amorphous CoFeP/NC hybrids as highly efficient electrocatalysts for water oxidation. Int J Hydrogen Energy. 2019.

[10] Yanxiang Wang, Huajun Yang, Xianhui Bu, Yong Wang, Xiaoxia Jia, Jinping Li, Pingyun Feng. A Tale of Two Trimers from Two Different Worlds: A COF‐Inspired Synthetic Strategy for Pore‐Space Partitioning of MOFs. Angew Chem Int Ed. 2019;58:6316-20.

[11] Yang J, Du B, Yuan N, Jia X, Li J. Vapor-assisted preparation of Mn/Fe/Co/Zn–Cu bimetallic metal–organic frameworks based on octahedron micron crystals (PCN-6′). New J Chem. 2019;43:6452-6.

[12] Wang Y, Zhang X, Li J, Liu C, Gao Y, Li N, et al. Enhancing the CO2 separation performance of SPEEK membranes by incorporation of polyaniline-decorated halloysite nanotubes. J Membr Sci. 2019;573:602-11.

[13] Wang M, Zhang W, Zhang F, Zhang Z, Tang B, Li J, et al. Theoretical expectation and experimental implementation of in-situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 2019;9:1489–502.

[14] Wang C, Zhang F, Yang J, Li J. Rapid and HF-free synthesis of MIL-100(Cr) via steam-assisted method. Materials Letter. 2019;252:286-8.

[15] Niu R, Liu P, Li W, Wang S, Li J. High performance for oxidation of low-concentration methane using ultra-low Pd in silicalite-1 zeolite. Microporous Mesoporous Mater. 2019;284:235-40.

[16] Liu G, Zhao Y, Yao R, Li N, Wang M, Ren H, et al. Realizing high performance solar water oxidation for Ti-doped hematite nanoarrays by synergistic decoration with ultrathin cobalt-iron phosphate nanolayers. Chem Eng J. 2019;355:49-57.

[17] Liu G, Zhao Y, Li N, Yao R, Wang M, Wu Y, et al. Ti-doped hematite photoanode with surface phosphate ions functionalization for synergistic enhanced photoelectrochemical water oxidation. Electrochim Acta. 2019;307:197-205.

[18] Liu G, Li N, Zhao Y, Wang M, Yao R, Zhao F, et al. Porous versus compact hematite nanorod photoanode for high performance photoelectrochemical water oxidation. ACS Sustainable Chem Eng. 2019;7:11377-85.

[19] Li R, Yuan H, Ma Z, Tang B, Li J, Wang X. Facile coupling of content design and efficient modulation on the activity of CNT-supported PdAgCu nanoparticle electrocatalysts: Leaching lift-up and annealing fall-off. Electrochim Acta. 2019;293:149-59.

[20] Jia X, Wang M, Liu G, Wang Y, Yang J, Li J. Mixed-metal MOF-derived Co-doped Ni3C/Ni NPs embedded in carbon matrix as an efficient electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energy. 2019;44:24572-9.

[21] Jia X, Guan Q, Chen Y, YongWang, QiangZhao, Li J. Poly (triazine imide) (PTI) and graphene hybrids supported PtSn catalysts for enhanced electrocatalytic oxidation of ethanol. Appl Surf Sci. 2019;492:879-85.

[22] Guo T, Nie X, Du J, Li J. 2D Feather-shaped Alumina Slice as Efficient Pd Catalyst Support for Oxidation Reaction of the Low-Concentration Methane. Chem Eng J. 2019;361:1345-51.

[23] Guang Liu, Muheng Wang, Rui Yao, Na Li, Yong Zhao, Fei Zhao, Jinping Li. Phosphate ions-functionalized and wettability-tuned nickel ferrite for boosted oxygen evolution performance. Int J Hydrogen Energy. 2019;44:26992-7000.

[24] Chen B, Peng Y-L, He C, Pham T, Wang T, Li P, et al. Robust Microporous Metal‐Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angew Chem Int Ed. 2019;58:10209-14.

[25] Zhao Qiang, Guo Wenjun, Liu Fengyu, Liu Lin, Li Dandan, Zhong Dazhong, Hao Genyan. In situ fabrication of nanostructured Au–B as high-efficient electrocatalyst for water splitting. Int J Hydrogen Energy, 2019, 44(29): 14938-14944.

[26] Wang Qiang, Wei Congcong, Li Dandan, Guo Wenjun, Zhong Dazhong, Zhao Qiang. FeNi-based bimetallic MIL-101 directly applicable as an efficient electrocatalyst for oxygen evolution reaction. Microporous Mesoporous Mater, 2019, 286: 92-97.

[27] Wang Qiang, Liu Fengyu, Wei Congcong, Li Dandan, Guo Wenjun, Zhao Qiang. High Efficiency FeNi‐Metal‐Organic Framework Grown In‐situ on Nickel Foam for Electrocatalytic Oxygen Evolution. ChemistrySelect, 2019, 4(19): 5988-5994.

[28] Li Dandan, Wei Congcong, Wang Qiang, Liu Lin, Zhong Dazhong, Hao Genyan, Zuo Zhijun, Zhao Qiang. Oxygen Evolution on in Situ Selective Formation of AgO: Plane Is the Key Factor. The Journal of Physical Chemistry C, 2019, 123(17): 10967-10973.

[29] 魏聪聪, 钟达忠, 李丹丹, 王强, 郭文君, 郝根彦, 赵强. 作为高效水氧化催化剂的多面体Cu2S块状晶体溶剂热合成[J]. 太原理工大学学报, 2019, 50(4): 421-429.

[30] 郭文君, 李丹丹, 王强, 魏聪聪, 钟达忠, 赵强. NiCoFe LDH阳极析氧催化剂的制备及性能研究, 太阳能学报,已接受.

[31] Yun-Lei Peng#, Chaohui He#, Tony Pham, Ting Wang, Pengfei Li, Rajamani Krishna, Katherine A. Forrest, Adam Hogan, Shanelle Suepaul, Brian Space, Ming Fang, Yao Chen, Michael J. Zaworotko, Jinping Li, Libo Li,* Zhenjie Zhang,* Peng Cheng,and Banglin Chen*. Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene[J]. Angewandte Chemie International Edition, 2019.58.10209-10214.

[32] Yang Ling,  Zhou Wei, Li Hao, Alsalme Ali,  Jia Litao, Yang Jiangfeng, Li Jinping, Li  Libo*; Chen Banglin*. Reversed ethane/ethylene adsorption in a metal–organic framework via introduction of oxygen[J]. Chinese Journal of Chemical Engineering, 2019. (accept).

[33] 贺朝辉, 杨玲, 李晋平, 李立博(通讯作者).分子筛用于丙炔/丙烯的高效分离[J]. 石油学报(石油加工), 2019,35(5): 855-859.

[34] 兰天昊,贺朝辉,杨玲,李晋平,李立博(通讯作者).金属有机骨架材料(MOFs)用于乙烷/乙烯的高效分离[J].石油学报(石油加工)(接受).

[35] 刘佳奇, 尚华, 唐轩, 杨江峰, 李晋平. 分子筛基CH4-N2分离材料的研究进展. 化工进展. 2019;38:447-54.

[36] Yang J, Bai H, Zhang F, et al. Effects of Activation Temperature and Densification on Adsorption Performance of MOF MIL-100 (Cr)[J]. Journal of Chemical & Engineering Data, 2019.(accept).

[37] Wei Li, Pengcheng Liu, Ruyue Niu, Jinping Li* and Shuang Wang*, “Influence of CeO2 supports prepared with different precipitants over Ru/CeO2 catalysts for ammonia synthesis”, Solid State Sciences, DOI: 10.1016/j.solidstatesciences.2019.105983, 2019.

[38] 雷娟,王爽*,李晋平*,甲苯催化氧化催化剂的研究进展. 太原理工大学学报, 2019, v.50, No.224 (04), 430-436.

[39] Pengcheng Liu, RuyueNiu, Wei Li, Shuang Wang* and Jinping Li*,“Morphology Effect of Ceria on the Ammonia Synthesis Activity of Ru/CeO2 Catalysts”, Catalysis Letters, 2019, 149(4): 1007-1016.

[40] Pengcheng Liu, Ruyue Niu, Wei Li, Shuang Wang* and Jinping Li*,“The effect of barium-promoted for microsphere Ru/CeO2 catalysts in ammonia synthesis”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(6): 689-699.

[41] Wang Yonghong, Li Long, Zhang Xinru, Li Jinping, Liu Chengcen, Li Nanwen, Xie Zongli, Polyvinylamine/graphene oxide/PANI@CNTs mixed matrix composite membranes with enhanced CO2/N2 separation performance, Journal of Membrane Science, 2019, 589: 117246.

[42] 廉玉姣,王永洪,张新儒,李晋平,N2优先渗透ZIF-8复合膜的制备及其CO2捕集[J]. 化工学报,2019, 70(9): 3573-3581.

[43] Shi W, Ahmed MM, Li S, Shang Y, Liu R, Guo T, et al. Regulating the Sensitivity and Operating Temperatures by Morphology Engineering of 2D ZnO Nanostructures and 3D ZnO Microstructures for the Detection of Organic-Amines. ACS Applied Nano Materials. 2019;2:5430-9.

[44] Jianping Du et al. Hollow Hemispherical Carbons with Mo2C Nanoparticles by Precursor Design: Effective Noble Metal-Free Catalysts for Dehydrogenation. 2019, Small Methods, 2019, accepted.